Quasilinear Stochastic Cauchy Problem in Abstract Colombeau Spaces
نویسندگان
چکیده
منابع مشابه
$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework
In the present work the space $L_{p;r} $ which is continuously embedded into $L_{p} $ is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...
متن کاملar X iv : m at h / 06 06 35 8 v 1 [ m at h . D G ] 1 5 Ju n 20 06 DIFFERENTIAL
Recently the space-time foam differential algebras of generalized functions with dense singularities were introduced, motivated by the so called space-time foam structures in General Relativity with dense singularities, and by Quantum Gravity. A variety of applications of these algebras has been presented, among them, a global Cauchy-Kovalevskaia theorem, de Rham co-homology in abstract differe...
متن کاملSolving fractional evolution problem in Colombeau algebra by mean generalized fixed point
The present paper is devoted to the existence and uniqueness result of the fractional evolution equation $D^{q}_c u(t)=g(t,u(t))=Au(t)+f(t)$ for the real $qin (0,1)$ with the initial value $u(0)=u_{0}intilde{R}$, where $tilde{R}$ is the set of all generalized real numbers and $A$ is an operator defined from $mathcal G$ into itself. Here the Caputo fractional derivative $D^{q}_c$ is used i...
متن کاملExistence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition
In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012